« Complexité pratique contre complexité théorique » : différence entre les versions

De Wiki du LAMA (UMR 5127)
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Aucun résumé des modifications
Ligne 4 : Ligne 4 :
La complexité en algorithmique sert à montrer l'efficacité d'un algorithme, en fonction de plusieurs facteurs comme son temps d'exécution, l'espace qu'il occupe dans la mémoire... (ces facteurs sont en générale induits par le nombre d'opérations qu'effectue l'algorithme).
La complexité en algorithmique sert à montrer l'efficacité d'un algorithme, en fonction de plusieurs facteurs comme son temps d'exécution, l'espace qu'il occupe dans la mémoire... (ces facteurs sont en générale induits par le nombre d'opérations qu'effectue l'algorithme).
Afin de mesurer et de représenter cette complexité, on représente l'évolution du temps d'exécution d'une même fonction en fonction de la taille de ses argument.
Afin de mesurer et de représenter cette complexité, on représente l'évolution du temps d'exécution d'une même fonction en fonction de la taille de ses argument.
On va donc, la plupart du temps utiliser des tableaux en entrée des fonctions et faire évoluer leurs taille
On va donc, la plupart du temps utiliser des tableaux en entrée des fonctions, et faire évoluer leurs taille afin d'obtenir la courbe de leur complexité.
Cette courbe va ainsi nous éclairer sur le comportement asymptotique de l'algorithme. Ce comportement asymptotique représente le comportement général de la fonction de la complexité (souvent impossible à calculer de manière exacte). Cette approximation est généralement représenté par O(f(n)), ou f(n) représente une fonction telle que $$1^Z $$


theorique forme infinie
pratique temps nb execution capacité a traiter information


à déterminer son comportement général
pratique

theorique
== Etudes d'algorithmes ==
== Etudes d'algorithmes ==
Afin de mesurer la complexité avec le langage python, on utilise généralement une fonction essentielle, la fonction "timeit"
<pre>
<pre>
import timeit
import timeit

def chronoquick(tab,nessais):
def chronoquick(tab,nessais):
'''Entrées: un tableau et un entier, Sortie: un entier'''
'''Entrées: un tableau et un entier, Sortie: un entier'''

Version du 5 mai 2021 à 14:20


Principe de la complexité

La complexité en algorithmique sert à montrer l'efficacité d'un algorithme, en fonction de plusieurs facteurs comme son temps d'exécution, l'espace qu'il occupe dans la mémoire... (ces facteurs sont en générale induits par le nombre d'opérations qu'effectue l'algorithme). Afin de mesurer et de représenter cette complexité, on représente l'évolution du temps d'exécution d'une même fonction en fonction de la taille de ses argument. On va donc, la plupart du temps utiliser des tableaux en entrée des fonctions, et faire évoluer leurs taille afin d'obtenir la courbe de leur complexité. Cette courbe va ainsi nous éclairer sur le comportement asymptotique de l'algorithme. Ce comportement asymptotique représente le comportement général de la fonction de la complexité (souvent impossible à calculer de manière exacte). Cette approximation est généralement représenté par O(f(n)), ou f(n) représente une fonction telle que $$1^Z $$

theorique forme infinie pratique temps nb execution capacité a traiter information

Etudes d'algorithmes

Afin de mesurer la complexité avec le langage python, on utilise généralement une fonction essentielle, la fonction "timeit"

import timeit

def chronoquick(tab,nessais):
    '''Entrées: un tableau et un entier, Sortie: un entier''' 
    res = timeit.timeit("quickselectmed("+ str (tab)+")","from __main__ import quickselectmed" , number= nessais)
    return res

dichotomie

tri de tableau: main/python

Bulle500.PNG Python500.PNG

mediane

medianes des medianes, quickselect

Multiplication naive / Karatsuba