« MATH304 : Mathématiques pour les sciences III » : différence entre les versions

De Wiki du LAMA (UMR 5127)
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
 
(13 versions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
'''Feuilles de TD'''

* [http://www.lama.univ-savoie.fr/~verovic/Math304/feuille1.pdf feuille de TD n°1] et le [http://www.lama.univ-savoie.fr/~verovic/Math304/corrigé-feuille1.pdf corrigé de quelques exercices]
* [http://www.lama.univ-savoie.fr/~verovic/Math304/feuille2.pdf feuille de TD n°2] et le [http://www.lama.univ-savoie.fr/~raffalli/pdfs/corrige-feuille2-11-12-14.pdf corrigé des exos 11, 12 et 14]
* [http://www.lama.univ-savoie.fr/~verovic/Math304/feuille3.pdf feuille de TD n°3]


= Séries numériques =
= Séries numériques =


Ligne 55 : Ligne 62 :
=Intégrales multiples, curvilignes et de surface=
=Intégrales multiples, curvilignes et de surface=


== Intégrales multiples dans R2 ==
== Intégrales multiples dans <math>\mathbb{R}^2</math> ==


définition à partir des intégrales simples pour des domaines dont le bord est une union finie de graphes de fonctions continues de R dans R (les domaines quarrables plus généraux ne sont pas considérés), C1 difféo, jacobien et changement de variable, coordonnées polaires, notion d'aire.
définition à partir des intégrales simples pour des domaines dont le bord est une union finie de graphes de fonctions continues de <math>\mathbb{R}</math> dans <math>R</math> (les domaines quarrables plus généraux ne sont pas considérés), C1 difféo, jacobien et changement de variable, coordonnées polaires, notion d'aire.


== Intégrales multiples dans R3 ==
== Intégrales multiples dans <math>\mathbb{R}^3</math> ==


idem, coordonnées cylindriques et
idem, coordonnées cylindriques et
sphériques, notion de volume.
sphériques, notion de volume.


== Intégrales curvilignes dans R3 ==
== Intégrales curvilignes dans <math>\mathbb{R}^3</math> ==


produit scalaire usuel, courbes paramétrées, champs de vecteurs, circulation (= travail d'une force), changement de paramètre, théorème de Green-Riemann.
produit scalaire usuel, courbes paramétrées, champs de vecteurs, circulation (= travail d'une force), changement de paramètre, théorème de Green-Riemann.


== Intégrales de surface dans R3 ==
== Intégrales de surface dans <math>\mathbb{R}^3</math> ==


surfaces paramétrées, vecteur normal, champs de vecteurs, flux, changement de paramètre, rotationnel et théorème de Gauss, divergence et théorème d'Ostrogradski.
surfaces paramétrées, vecteur normal, champs de vecteurs, flux, changement de paramètre, rotationnel et théorème de Gauss, divergence et théorème d'Ostrogradski.

Dernière version du 12 novembre 2008 à 22:11

Feuilles de TD


Séries numériques

Généralités

définition, série convergente, convergence (C) => terme général tend vers 0, exemples, opérations sur les séries.

Séries à termes positifs

convergence <-> sommes partielles bornées, comparaison , tend vers l, comparaison à une intégrale, série des , exemples.

Convergence des séries numériques

absolue convergence (AC), AC -> C, règles de d'Alembert et Cauchy, exemples.

Séries alternées

théorème de convergence, exemples.

Produit de deux séries

théorème AC*AC-> AC, exemples.

Théorème d'Abel

énoncé, exemples.

Suites et séries de fonctions

Généralités

convergences simple, uniforme et normale, permutation des limites si convergence uniforme : continuité, intégrabilité, dérivation.

Séries entières

définition, rayon de convergence, exemples, convergence normale, détermination du rayon de convergence avec Cauchy et d'Alembert, développement en séries entières de sin(z), cos(z), e^z, 1/(1+z), ln(1+z) et (1+z)^a, propriétés de la somme d'une série entière : continuité, dérivabilité, produit de deux séries entières, application à la résolution d'une édo.

Séries de Fourier

définition, écriture réelle et complexe, développement d'une fonction 2pi périodique, calcul des coefficients, théorème de Dirichlet, formule de Parseval.

Fonctions de dans

Introduction

norme euclidienne standard, boules, voisinages et ouverts dans R^p, suites convergentes dans R^p, limite et continuité des fonctions de R^p dans R (uniquement à l'aide de suites).

Dérivées partielles

dérivées partielles premières, gradient (pas de différentielle), dérivées partielles secondes, matrice hessienne, théorème de Schwarz.

Extremums

définition, condition nécessaire, condition suffisante avec la hessienne dans le cas de R2 (p = 2).

Intégrales multiples, curvilignes et de surface

Intégrales multiples dans

définition à partir des intégrales simples pour des domaines dont le bord est une union finie de graphes de fonctions continues de dans (les domaines quarrables plus généraux ne sont pas considérés), C1 difféo, jacobien et changement de variable, coordonnées polaires, notion d'aire.

Intégrales multiples dans

idem, coordonnées cylindriques et sphériques, notion de volume.

Intégrales curvilignes dans

produit scalaire usuel, courbes paramétrées, champs de vecteurs, circulation (= travail d'une force), changement de paramètre, théorème de Green-Riemann.

Intégrales de surface dans

surfaces paramétrées, vecteur normal, champs de vecteurs, flux, changement de paramètre, rotationnel et théorème de Gauss, divergence et théorème d'Ostrogradski.