« Lambda counting » : différence entre les versions
| Ligne 13 : | Ligne 13 : | ||
== Lambert function, Catalan and Motzkin numbers == |
== Lambert function, Catalan and Motzkin numbers == |
||
=== Catalan numbers === |
|||
| ⚫ | |||
| ⚫ | |||
Usual equivalent: <math>C(n) \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}</math> which is obtained using Strirling formula. |
|||
However, using stirling series: <math> |
|||
n!=\sqrt{2\pi n}\left({n\over e}\right)^n |
|||
\left( |
|||
1 |
|||
+{1\over12n} |
|||
+{1\over288n^2} |
|||
-{139\over51840n^3} |
|||
-{571\over2488320n^4} |
|||
+ \cdots |
|||
\right) |
|||
</math>, we get that forn <math>n\leq1</math> <math>\sqrt{2\pi n}\left({n\over e}\right)^n \leq n! \leq \frac{13}{12}\sqrt{2\pi n}\left({n\over e}\right)^n</math> |
|||
* <math>M(n,k)</math>: Motzkin numbers. |
* <math>M(n,k)</math>: Motzkin numbers. |
||
* <math>W(\alpha)</math>: Lambert W function (<math> X = Y e ^ Y \; \Longleftrightarrow \; Y = W(X) </math>). |
* <math>W(\alpha)</math>: Lambert W function (<math> X = Y e ^ Y \; \Longleftrightarrow \; Y = W(X) </math>). |
||
Version du 17 octobre 2008 à 15:29
Introduction
The question is: among programs, what is the probability of having a fixed property.
what kind of program : turing machines, cellular automata, combinatory logic, lambda calculus
what kind of properties : structural (for functional programs), behaviour (SN, weakly normalizable, ...
references to known results on : turing machines, cellular automata
we concentrate on combinatory logic, lambda calculus
Lambert function, Catalan and Motzkin numbers
Catalan numbers
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle C(n)} : Catalan numbers
Usual equivalent: which is obtained using Strirling formula. However, using stirling series: , we get that forn
- : Motzkin numbers.
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle W(\alpha)} : Lambert W function (Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle X = Y e ^ Y \; \Longleftrightarrow \; Y = W(X) } ).
combinatory logic
results on combinatory logic
Generality on lambda calculus
what kind of distribution ?
we look only for densities,
for that we need size.
different size for variables: zero, one, binary with optimal size, binary with fixed size, debruijn indices in unary...
we concentrate on the simple one : variable of size zero (probably similar for size one ) more later for other size
generating functions
this does not work (by now) because radius of convergence 0
no known results for the number of terms of size n (denoted Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle L_n} )
our results
(the proof of result of section k needs the result of section (k-1))
Upper and lower bounds for Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle L_n}
For the lower bound, we will first count the number Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle LB(n,k)} of lambda-terms of size Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle n} starting with Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle k} lambdas and having no other lambda below. This means that the lower part of the term is a binary tree of size Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle n-k} with Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle k} possibility for each leaf. Therefore we have:
From the equivalent, we have for Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle k} and Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle n-k} large enough:
And therefore
Now, for Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle n} fixed, we define Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle f(\alpha) = ((1-\alpha) n)^{n\alpha}} (so Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle LB(n,k) = 4^n f(1-\frac{k}{n})} ) and look for the maximum of this function. We have Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle f'(\alpha) = n f(\alpha) \left(\ln(n(\alpha)) -\frac{1-\alpha}{(\alpha)}\right)}
upper and lower bounds for number of lambdas in a term of size n
Jakub's trik : at least 1 lambda in head position
at least Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle o(\sqrt{n/\ln(n)})} lambdas in head position and number of lambdas in one path
Remark: (may be 4) can be done directly without 3))
each of the Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle o(\sqrt{n/\ln(n)})} head lambdas really bind "many" occurrences of the variable
every fixed closed term (including the identity !) does not appear in a random term (in fact we have much more than that)
comment : so different situation in combinatory logic and lambda calculus ; the coding uses a big size so need to count variables in a different way
Experiments
results of the experiments we have done
some experiments that have to be done : e.g. density of terms having Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle \lambda x.y} or big Omega pattern ...
to be done
Upper and lower bounds for Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle L_n} with other size for variables especially one, binary with fixed size
Open questions and Future work
.....