« INFO821 : Infographie » : différence entre les versions
| Ligne 13 : | Ligne 13 : | ||
=== Coordonnées projectives dans le plan et l'espace === |
=== Coordonnées projectives dans le plan et l'espace === |
||
Idée : ajouté les points à l'infini. Intérêt : simplifie beaucoup de choses (transformation affine, projection, classification des quadriques, ...) |
|||
* <math>(x:y:t) \in \mathbb{P}^2</math> dans le plan projectif si <math>(x,y,t)\neq(0,0,0)</math>. De plus si <math>a \neq 0</math>, <math>(x:y:t)=(ax:ay:at)</math> |
* <math>(x:y:t) \in \mathbb{P}^2</math> dans le plan projectif si <math>(x,y,t)\neq(0,0,0)</math>. De plus si <math>a \neq 0</math>, <math>(x:y:t)=(ax:ay:at)</math> |
||
| Ligne 20 : | Ligne 22 : | ||
Comparaison avec les coordonnées cartésiennes : <math>(x:y:z:0)</math> est le point à l'infini dans la direction (x,y,z) ou (-x:-y:-z). Parfois utile de distinguer <math>(x:y:z:0)</math> de <math>(-x:-y:-z:0)</math>. <math>(x:y:z:t)</math> représente le point <math>(x/t,y/t,z/t)</math> si <math>t\neq 0</math>. |
Comparaison avec les coordonnées cartésiennes : <math>(x:y:z:0)</math> est le point à l'infini dans la direction (x,y,z) ou (-x:-y:-z). Parfois utile de distinguer <math>(x:y:z:0)</math> de <math>(-x:-y:-z:0)</math>. <math>(x:y:z:t)</math> représente le point <math>(x/t,y/t,z/t)</math> si <math>t\neq 0</math>. |
||
Donc le point de coordonnées cartésiennes <math>(x,y,z)</math> à les coordonnées projectives <math>(ax:ay:az:a)</math> pour tout <math>a</math>. |
Donc le point de coordonnées cartésiennes <math>(x,y,z)</math> à les coordonnées projectives <math>(ax:ay:az:a)</math> pour tout <math>a</math>. |
||
=== Equation d'un plan et d'une droite === |
|||
Version du 4 janvier 2010 à 09:46
Bases mathématiques
Coordonnées cartésiennes dans le plan et l'espace
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x,y) \in \mathbb{R}^2} dans le plan
- dans l'espace
- Généralisation dans
Distinction en point et vecteur (direction).
Problèmes de représentation en machine : virgule flottante, virgule fixe, entier ... Tableau ou enregistrement (record).
Coordonnées projectives dans le plan et l'espace
Idée : ajouté les points à l'infini. Intérêt : simplifie beaucoup de choses (transformation affine, projection, classification des quadriques, ...)
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x:y:t) \in \mathbb{P}^2} dans le plan projectif si Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x,y,t)\neq(0,0,0)} . De plus si Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle a \neq 0} , Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x:y:t)=(ax:ay:at)}
- Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x:y:z:t) \in \mathbb{P}^3} dans l'espace projectif
- Généralisation dans Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle \mathbb{P}^n}
Comparaison avec les coordonnées cartésiennes : Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x:y:z:0)} est le point à l'infini dans la direction (x,y,z) ou (-x:-y:-z). Parfois utile de distinguer Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x:y:z:0)} de Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (-x:-y:-z:0)} . Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x:y:z:t)} représente le point Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x/t,y/t,z/t)} si Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle t\neq 0} . Donc le point de coordonnées cartésiennes Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (x,y,z)} à les coordonnées projectives Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle (ax:ay:az:a)} pour tout Échec de l’analyse (SVG (MathML peut être activé via une extension du navigateur) : réponse non valide(« Math extension cannot connect to Restbase. ») du serveur « https://wikimedia.org/api/rest_v1/ » :): {\displaystyle a} .