INFO821 : Infographie
Aller à la navigation
Aller à la recherche
Bases mathématiques
Coordonnées cartésiennes dans le plan et l'espace
- dans le plan
- dans l'espace
- Généralisation dans
Distinction en point et vecteur (direction).
Problèmes de représentation en machine : virgule flottante, virgule fixe, entier ... Tableau ou enregistrement (record).
Coordonnées projectives dans le plan et l'espace
Idée : ajouté les points à l'infini. Intérêt : simplifie beaucoup de choses (transformation affine, projection, classification des quadriques, ...)
- dans le plan projectif si . De plus si ,
- dans l'espace projectif
- Généralisation dans
Comparaison avec les coordonnées cartésiennes : est le point à l'infini dans la direction (x,y,z) ou (-x:-y:-z). Parfois utile de distinguer de . représente le point si . Donc le point de coordonnées cartésiennes à les coordonnées projectives pour tout .