Bases mathématiques
Coordonnées cartésiennes dans le plan et l'espace
- dans le plan
- dans l'espace
- Généralisation dans
Distinction en point et vecteur (direction).
Problèmes de représentation en machine : virgule flottante, virgule fixe, entier ...
Tableau ou enregistrement (record).
Opérations sur les vecteurs : sommes, multiplication par un scalaire, produit scalaire et produit vectoriel.
Coordonnées projectives dans le plan et l'espace
Idée : ajouté les points à l'infini. Intérêt : simplifie beaucoup de choses (transformation affine, projection, classification des quadriques, ...)
- dans le plan projectif si . De plus si ,
- dans l'espace projectif
- Généralisation dans
Comparaison avec les coordonnées cartésiennes : est le point à l'infini dans la direction (x,y,z) ou (-x:-y:-z). Parfois utile de distinguer de . représente le point si .
Donc le point de coordonnées cartésiennes à les coordonnées projectives pour tout .
Opération sur les vecteurs : attention à la somme !
Équation d'un plan et d'une droite
Donnée d'une droite du plan par un point et une direction .
est alors une direction orthgonale (on dit normale à la droite).
Équation implicite en cartésien : . C'est à dire:
. En projectif: (l'équation est homogène).
Donnée d'un plan de l'espace par un point et une direction normale .
Équation implicite en cartésien : . C'est à dire:
. En projectif: (l'équation est homogène).
Donnée d'une droite de l'espace par un point et une direction .
...